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ABSTRACT  

In vivo hepatic 1H lineshapes modeled by the complex Voigt 
function are desirable to reduce systematic error and obtain 
accurate fits. However, the optimization procedure becomes 
challenging when the peak resonances overlap and the 
proportion of Gaussian to Lorentzian dampings is a priori
unknown. In this context, nonlinear least-squares algorithms 
generally invoked in Magnetic Resonance Spectroscopy 
quantification are highly sensitive to the starting values and 
parameter bounds. To alleviate this sensitivity, multiple 
random starting values and parameter bounds settings are 
used to generate candidate solutions. The “best fit” fulfilling 
requirements on the cost function and damping factor final 
values is then selected among them. Monte Carlo studies 
and an in vivo hepatic 1H signal quantification demonstrated 
the relevance of the proposed strategy. 

Index Terms— Voigt Lineshape, optimization, starting 
values, model parameter bounds, Magnetic Resonance 
Spectroscopy

1. INTRODUCTION 

Accurate quantification is a major step of in vivo proton 
NMR spectroscopic studies. A large number of the 
numerical modelling techniques fit the spectra/signals to 
assumed model functions [1-5]. The use of an inappropriate 
model leads to systematic errors in metabolite concentration 
estimates [6, 7]. Previous studies focused on in vivo
experiments performed in the brain have stated that 
experimental lineshapes are better modelled by the Voigt 
functions [6]. In case of in vivo hepatic 1H Magnetic 
Resonance Spectroscopic (MRS) data, the MR spectrum 
exhibits broad patterns which also induce the use of a Voigt 
lineshape model function for its quantification. While the 
Voigt lineshape function is a more suited and flexible model, 
it also introduces more correlation terms between the model 
parameters. Moreover when dealing with Voigt lineshapes, 
the proportion of Gaussian to Lorentzian is a priori
unknown. These sources of uncertainty as well as the 
parameter interdependences make the choice of the starting 

values and priori knowledge crucial in order to avoid local 
minima. The time-domain algorithms available in the 
literature for MRS quantification have proposed several 
approaches to set-up the starting values. In AMARES [2], 
starting values of the nonlinear parameters are obtained by 
peak-picking on the spectrum display so that they are close 
to the solution. In QUEST [3] or AQSES [4], the use of a 
metabolite basis-set alleviates somehow user’s 
involvements. Indeed, the metabolite basis-set constitutes 
both the prior knowledge included in the model function and 
the starting values of the nonlinear parameters. In QUEST, 
the upper and lower bounds as well as extra-damping 
starting values sometimes need to be tuned to better adapt 
the basis-set to the in vivo signal. In the AQSES framework 
which uses an improved implementation of VARPRO [5], it 
was found that good initial values for the non linear 
parameters were zeros. Altogether, in all these different 
algorithms, only a single set of starting values is used. 

The goal of this paper was to demonstrate the relevance 
of an effective strategy to set up starting values and 
parameter bounds when fitting, via a minimization algorithm 
of the Levenberg-Marquardt type, a mixture of Voigt 
functions as the one encountered in hepatic MR 
spectroscopy. A fully automatic fitting scheme based on the 
Voigt model function which is robust regarding the 
influences of the starting values and the model parameter 
bounds is derived. Finally, quantification of short-echo time 
1H MRS human liver signals acquired at 1.5T is 
demonstrated. 

2. METHOD 

2.1. The core algorithm 

The quantification procedure is based on a nonlinear least-
squares algorithm (Levenberg-Marquardt, MATLAB 7.4) 
that fits the in vivo time-domain signal to a combination of K
Voigt lineshape functions (K corresponds to the number of 
resonances in the in vivo spectrum). Each Voigt component 
is characterized by the combination of Lorentzian and 
Gaussian functions. 
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The model parameters ak, αk, βk, fk, φ0 correspond to the 
amplitudes, the Lorentzian and Gaussian damping factors, 
the frequencies and the zero-order phase. N is the number of 
data-points. tn=nts+t0 are the sampling times, in which t0 is 
the dead-time of the receiver and ts the sampling interval and 
i2=-1. The optimization procedure aims to obtain the model 
parameters that minimize the cost function: 
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where yn are the measured complex-value time-domain data-
points, n are the complex-value data-points of the sum of 
the Voigt functions. The cost function is indexed by 4 sets of 
values: the upper bounds UP of the Gaussian and Lorentzian 
damping parameters, and their starting values respectively 
StartL and StartG. Frequencies need first to be provided by 
the user. Then, the global damping parameters are guessed 
from the Full Width at Half Maximum (FWHM) 
measurements made on the peaks corresponding to the user–
defined set of frequencies. The global damping parameter of 
each component is roughly estimated as the average of 
theoretical Gaussian and Lorentzian damping factors
according to the following approximation: 
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Eq. 3 

But, we emphasis once again that the relative proportions of 
Lorentzian and Gaussian damping factors are a priori
unknown in the global damping factor. After setting 
arbitrarily or randomly these proportions, starting values for 
the linear parameters (amplitudes and phases) can be 
deduced by solving a linear least-squares (LS) problem as 
used in [3,4]. Frequency parameters were constrained within 
an interval of ± 5Hz around the frequency starting values. 

2.2. Influence of the starting values and upper bounds of 
the Voigt model parameter on estimates for a 
noiseless signal 

A signal mimicking an in vivo 1H hepatic signal acquired at 
1.5T was generated for the Monte Carlo study. It consists of 
a weighted sum of ten Voigt functions. The model 
parameters of the Voigt functions are displayed in Table 1. 
The zero-order phase was set to zero. This signal was 
quantified two hundred times, with varying sets of frequency 
starting values. These sets were randomly chosen within an 
interval of ± 2Hz around the true frequencies using a 
uniform distribution. Each time, the procedure defined in 2.1 
was used with a single set of starting values and bounds. The 
starting values StartL and StartG were arbitrarily chosen in 
equal proportion in the measured global damping factors. 

The upper bounds for all the damping factors were set to 
130Hz. These upper bounds were chosen empirically to 
match the observed hepatic liver signal properties. The 
sensitivity of the optimization problem to the starting values 
was pointed out by drawing the distributions of the cost 
functions, of the amplitude parameter estimates and of the 
damping factor estimates for the two hundred fits of the 
noiseless signal. 

 f 
(ppm) 

αααα
(Hz) 

ββββ
(Hz) 

a 
(a.u.) 

1 5.07 2.96 107.99 248
2 4.68 0.36 41.29 873
3 4.58 18.89 10.17 388
4 3.84 0.56 37.81 78
5 3.62 0.02 53.42 93
6 3.17 0.00 30.43 90
7 2.09 0.00 43.19 80
8 1.72 0.02 79.63 70
9 1.21 0.01 38.88 694
10 0.82 0.01 48.95 211

Table 1: Model parameters of the ten Voigt functions in the 
simulated signal considered for the Monte Carlo study. 

2.3. Strategy to handle the starting values and upper 
bounds effects on the Voigt model parameter 
estimates 

Two strategies to handle the starting values and upper 
bounds effects on the Voigt model parameter estimates were 
designed and compared.  

Single user-defined starting values and bounds 
(SSV). 
Multiple randomly chosen starting values (MSV) in 
a suited range and selection of the “best fit”.

2.1.1. SSV 
The first strategy called SSV corresponds to the usual set-up 
of starting values. Well designed starting values for the 
frequencies were obtained by peak-picking the frequencies 
on the spectrum display. The upper bounds of the damping 
factor parameters were fixed to 130 Hz (value empirically 
chosen to match the hepatic liver signal properties). 

2.1.2. MSV  
In order to reduce the risk of convergence to local minima, 
the fittings were repeated automatically with several 
combinations for the starting values and upper bounds. A 
total of about seven-hundred combinations were randomly 
set-up. Since no prior knowledge is available, uniform 
distributions were used to draw these combinations 
according the following framework. 

For each component, one hundred global damping 
factors kglobal,γ were drawn using a uniform distribution 

within an interval of ± 30% around the values estimated 
according to 2.1 to take into account uncertainties on the 
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estimation of kglobal,γ .  Then the starting values StartL and 
StartG were set-up in random proportion within the global 
damping factor, according to Eq.4. 
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Eq. 4

where  follows a uniform distribution over [0,1].  
Several upper bounds for the Lorentzian and Gaussian 

damping factor parameters (UPL and UPG) were set-up and 
tested. The first sets were set to the starting values enlarged 
by 20Hz. They were then independently incremented by step 
of 20Hz till the minimum between twice the starting value 
and 130Hz was reached.  
At the end, a unique set of model-parameter estimates was 
selected among solutions obtained by the different UP, 
StartL, StartG combinations. This set of model parameters, 
corresponding to the “best fit”, fulfil the requirement of 
producing the lowest cost function and its damping factors 
being lower than 99% of their respective upper bounds UP. 

2.4. Monte Carlo simulations 

The comparison of both strategies was performed with the 
aid of Monte Carlo simulations. A total of fifty realizations 
of a white Gaussian distributed noise were added to the 
simulated signal presented in Table 1. The noise level was 
chosen corresponding to signal-to-noise ratios (SNRs) of 
353:1 compared to the total amplitude. This SNR 
corresponds approximately to the in vivo measured SNRs. 
The Lorentzian and the Gaussian damping factors, the 
frequencies, the amplitudes and the zero-order phase are the 
parameter to estimate. The statistical performances of the 
two strategies were evaluated and compared through the 
computation of the means, the biases and the standard 
deviations of all the estimates.  

2.5. Application to in vivo hepatic spectroscopic signals 

The MR spectroscopy signal used to demonstrate the effects 
of the proposed strategies was derived from an acquisition 
on a patient with suspected diffuse liver diseases [8]. The 
MR experiments were performed on a clinical 1.5 T 
Symphony system (Siemens Medical Solutions, Erlangen, 
Germany) using phased-array body coils. Localized MRS 
acquisitions were performed using a short–echo time 
respiration trigged PRESS sequence (TR/TE 1500/30 ms, 
about 6 minutes acquisition time, depending on the patient’s 
respiratory cycle). The Eddy current effects were corrected 
using the water signal as reference. Ten components were 
selected to fit the saturated lipids (0.9ppm, 1.3ppm and 
1.8ppm), the unsaturated lipids (2.1ppm, 5.2ppm), the water 
residue (2 components around 4.7ppm) and the metabolite 
contributions, See Figure 3. The assignations of the 
resonances referred to the published values in [9, 10]. 

3. RESULTS 

3.1. Study on the noiseless signal  

The distribution of the cost functions related to the 200 fits 
of the simulated noiseless signal is displayed on the left 
column of Fig 1. The distributions of the amplitude 
parameter estimates versus the frequency parameter 
estimates (middle column) and the damping factor estimates 
(right column) for the resonances 1, 5 and 10 of Table 1 
were also reported. The fitting of this noiseless signal using 
a complex Voigt lineshape model corresponds to a non-
convex optimization problem, with multiple feasible regions 
and multiple locally optimal points within each region. This 
is demonstrated by the distributions shown in  Figure 1. 
Note that these distributions are related to the properties of 
the resonance peak itself and its interactions with the other 
peaks. These interactions can be partially characterized by 
the correlation term between the model function parameters 
computed from the Fisher Information matrix (results not 
shown). 

Figure 1: Distributions related to the two-hundred solutions of the 
repeated fits of the noiseless signal mimicking an in vivo 1H 
hepatic signal acquired at 1.5T of a) the cost functions (histogram), 
b) the amplitude and frequency estimates and c) the Lorentzian and 
Gaussian damping factor estimates,for  resonances 1,5,10 of Tab 1. 

3.2. Monte Carlo simulations on noisy signals 

Means and standard deviations for the amplitude, the 
Lorentzian and Gaussian damping factor parameter 
estimates are displayed for peak n°1, 5 10 on Figure 2. The 
bias is the distance between the mean value and the solid 
line corresponding to the actual values. The biases were 
noticeably reduced using the MSV strategy, reflecting the 
robustness of this approach. The Monte Carlo showed that, 
in general, the standard deviations were also reduced.  

3.3. Application to in vivo hepatic spectroscopic signals  

The MSV strategy was applied on an in vivo liver 
spectroscopy signal. The final cost functions for all the 
tested starting values and bounds are displayed in Figure 3. 
The “best fit” was highlighted among all the candidate 
solutions and the corresponding signal estimate is displayed. 
The main groups of resonances originating from different 
types of lipids, compounds of choline, TMAO, glucose and 
glycogen were successfully quantified. 
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Figure 3: Monte Carlo simulation results (mean and standard 
deviation of 50 noisy signals) comparing the use of a single set
of starting values and bounds ( SSV) to the use of multiple starting 
values and bounds and “best fit” selection (MSV) for peak n°1, 5 
10. Solid lines design the actual values.  

4. CONCLUSION 

An effective framework using multiple random starting 
values and bounds was proposed for Voigt model estimation 
in hepatic 1H magnetic resonance spectroscopic signals. 
Indeed Monte Carlo studies showed substantial bias 
reductions and general standard deviation decreases for the 
amplitude, Lorentzian and Gaussian damping factor 
estimates. Consequently, a MSV type approach is highly 
advisable when dealing with Voigt lineshapes. The 
counterpart of this approach is its computational time.  
However, parallelization of the procedure can attenuate this 
drawback and is straightforward to implement as the starting 
values and bounds settings are independent of each other. 
Finally, this fully automated quantification technique will 
enable robust analyses of large amount of data required by 
clinical studies or MR spectroscopic imaging studies. 
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 Figure 3: Quantification of a 1H water-suppressed spectrum acquired at 1.5T from the right hepatic lobe of a patient a) Cost function 
distribution of all the candidate solutions, in gray the cost function for which the damping parameters were lower than the upper bounds, in 
black the one for which they reached the upper bound, the star corresponds to the selected “best fit” displayed in b) as a sum of Voigt 
lineshape resonances (dotted line), the original spectrum (dark gray), individual components (light gray) and the residue (black bold line).  
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